
Detection of Algorithmically Generated Domain Names used by
Botnets: A Dual Arms Race.

Jan Spooren
imec - Distrinet - KU Leuven

Heverlee, Belgium
jan.spooren@cs.kuleuven.be

Davy Preuveneers
imec - Distrinet - KU Leuven

Heverlee, Belgium
davy.preuveneers@cs.kuleuven.be

Lieven Desmet
imec - Distrinet - KU Leuven

Heverlee, Belgium
lieven.desmet@cs.kuleuven.be

Peter Janssen
EURid VZW, Belgium
Diegem, Belgium

Peter.Janssen@eurid.eu

Wouter Joosen
imec - Distrinet - KU Leuven

Heverlee, Belgium
wouter.joosen@cs.kuleuven.be

ABSTRACT
Malware typically uses Domain Generation Algorithms (DGAs) as
a mechanism to contact their Command and Control server. In re-
cent years, different approaches to automatically detect generated
domain names have been proposed, based on machine learning.
The first problem that we address is the difficulty to systematically
compare these DGA detection algorithms due to the lack of an inde-
pendent benchmark. The second problem that we investigate is the
difficulty for an adversary to circumvent these classifiers when the
machine learning models backing these DGA-detectors are known.
In this paper we compare two different approaches on the same set
of DGAs: classical machine learning using manually engineered
features and a ‘deep learning’ recurrent neural network. We show
that the deep learning approach performs consistently better on
all of the tested DGAs, with an average classification accuracy of
98.7% versus 93.8% for the manually engineered features. We also
show that one of the dangers of manual feature engineering is that
DGAs can adapt their strategy, based on knowledge of the features
used to detect them. To demonstrate this, we use the knowledge of
the used feature set to design a new DGA which makes the random
forest classifier powerless with a classification accuracy of 59.9%.
The deep learning classifier is also (albeit less) affected, reducing
its accuracy to 85.5%.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; •Com-
putingmethodologies→Neural networks;Classification and
regression trees;

KEYWORDS
MalwareDetection, DomainGenerationAlgorithms,Machine Learn-
ing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297467

ACM Reference Format:
Jan Spooren, Davy Preuveneers, Lieven Desmet, Peter Janssen, and Wouter
Joosen. 2019. Detection of Algorithmically Generated Domain Names used
by Botnets: A Dual Arms Race.. In The 34th ACM/SIGAPP Symposium on
Applied Computing (SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New
York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3297280.3297467

1 INTRODUCTION
The Internet connects billions of devices, ranging from servers
and personal computers to tablets, mobile phones, household appli-
ances, and many more. Malicious actors are constantly scanning the
internet for vulnerable devices which could be compromized, or are
tricking users into unknowingly installing malware on their devices.
Once this malware is present on a machine, it can be used to attack
other machines, send unsolicited or phishing e-mails, eavesdrop
on communication, steal e-mail addresses, encrypt the contents of
the machine requesting from the user a ransom for the ability to
decrypt, and many more malicious schemes. Large pools [17] of
infected machines, called botnets [4] exist, which are controlled
from Command and Control (C&C) servers (as depicted in Figure 1).

DNS Server

Bot with Malware C&C Server
[1.2.3.4]

(1
) I

P
ad

dr
es

s
fo

r a
js

hu
fh

se
bn

c.
co

m
?

(3
) I

P
ad

dr
es

s
fo

r j
d7

ah
sj

dk
.c

om
?

(2
) D

om
ai

n
do

es
 n

ot
 e

xi
st

(4
) 1

.2
.3

.4

(5) Call home to 1.2.3.4

DGA domains:

ajshufhsebnc.com
jd7ahsjdk.com
dsf846sdf.com
sdf6e8w13s.com
...

Internet

Figure 1: Bot using DGA to connect to a C&C Server

https://doi.org/10.1145/3297280.3297467
https://doi.org/10.1145/3297280.3297467

SAC ’19, April 8–12, 2019, Limassol, Cyprus Jan Spooren, Davy Preuveneers, Lieven Desmet, Peter Janssen, and Wouter Joosen

To prevent those C&C servers from being shut down or made
unreachable, malware typically uses Domain Generation Algorithms
(DGAs) [15] in order to create a new set of pseudo-random domain
names every certain period of time. Many random domains are
generated and then tried by the malware, only one of which the
botnet owner must register in order for the botnet to be able to
successfully reconnect to its C&C server. This makes taking down
botnets a difficult task.

Conversely, recognizing algorithmically generated domain names
can help in detecting infected hosts, as well as flag domain name
registrations made with the intent to control a botnet. Machine
learning classifiers that can successfully distinguish an algorithmi-
cally generated domain name from a human-created domain name
are therefore useful tools to security researchers, law enforcement
and network operations staff.

In the domain of security and privacy, deep neural networks
have demonstrated their ability to autonomously find and extract
relevant features as well as improved classification accuracies when
compared to traditional machine learning methods [5, 11, 16]. Also
for the detection of DGAs, there is recent related work proposing
solutions based on both traditional machine learning and deep
learning methods. However, malicious adversaries can exploit these
AI classification methods too to evade detection of their malware.
These observations reflect the dual arms race. The first race relates
to further improving advanced deep learning methods to extract
better features for offensive or defensive purposes. The second one
is the cat and mouse game of adversaries trying to circumvent new
defensive measures developed by security specialists, irrespective
of the type of machine learning methods being used.

The first challenge that we address in this work is that existing
detection methods are difficult to compare. Not only do they rely
on different data sets and ground truths to assess their classification
accuracy, assumptions made by some of these related works regard-
ing the ground truth of malicious versus benign domain names may
not always be valid. Both concerns make it difficult to interpret
and compare the accuracy of DGA detection methods. The second
challenge that we focus on in this work is that adversaries become
smarter too in circumventing these DGA detection methods.

The main contributions of this work are as follows:

(1) We independently benchmark and compare two state-of-
the-art DGA detection methods: (a) FANCI [19], a state-of-
the-art Random Forest based classifier recently presented
at USENIX Security 2018 using manually crafted features,
and (b) Woodbridge’s LSTM [24], a deep recurrent neural
network based classifier.

(2) We illustrate the arms race using FANCI as a detection
method and designing a new DGA that exploits knowledge
about FANCI’s feature extraction to circumvent detection.
We also evaluate how well our new DGA is able to fool
Woodbridge’s LSTM for which the inherent features that
characterize a DGA are more implicit.

In section 2, we briefly summarize relevant related work, elabo-
rating on an approach using Random Forests with manually crafted
features. In section 3, we explain the used methodology, the col-
lection of the ground truth data (section 3.1) and the compared
classifiers (section 3.2). We present the results of this comparison in

section 4. In section 5, we show that knowledge of the used feature-
set can be abused by DGAs to circumvent detection, by building a
DGA which achieves exactly this. Finally, in section 6, we state our
main conclusions.

2 RELATEDWORK
Many different approaches were taken to detect DGA-generated do-
main names: Yadav et al. [25] employed DNS queries and responses
for detecting malware. They used the entropy in the observed un-
igram and bigram statistics on the character sequences present
in domain names to distinguish (often difficult to pronounce) ran-
dom character strings from human-created (and usually better pro-
nounceable) domain names. Antonakakis et al. [3] use a clustering
approach on the length, level of randomness and character fre-
quency distribution, including the n-gram distribution (with n =
1,..,4) of observed domain names that have been queried by over-
lapping sets of hosts. In a second phase, a Hidden Markov Model
(HMM) is used for determining the likelihood that a domain name
is a C&C domain generated by a particular DGA.

Mowbray and Hagen [12] described a procedure to detect even
previously unseen DGAs from DNS query data, by spotting an
unusual number of DNS requests for an unusual distribution in
domain name length. While their method proved successful, it is
doubtful if using domain name length only as a feature for detection
will suffice when DGAs become more advanced.

Schiavoni et al. [18] created a system called Phoenix for detecting
DGA-based botnets, which uses filtering using linguistic features
(detecting meaningful subwords, n-gram normality scores and sta-
tistical linguistic features for the English language), followed by a
clustering step and finally, a fingerprinting step to extract invariant
properties of a DGA and subsequently label the collected domain
names.

In an excellent paper by Woodbridge et al. [24], Long Short-Term
Memory (LSTM) networks [8] are proposed to detect algorithmically-
generated domain names. Woodbridge and his team at EndGame,
Inc. show that LSTMs are far superior to Random Forests with man-
ually engineered features, logistic regression with bigram features
and HMM classifiers.

Pereira et al. [13] proposed a novelWordGraph method for de-
tection of dictionary-based DGAs using graph-theory. They showed
that random forests using lexical features perform badly on dictionary-
based DGAs, likely due to the good resemblance of the features to
manually chosen domain names. Their method outperforms convo-
lutional neural nets for dictionary-based DGAs, which they have
found to work well too on these DGAs, presumably due to the
neural net’s ability to learn interesting soft n-grams, which, in a
sense, allows them to memorize dictionaries, too.

Recently, a paper by Schüppen et al. [19] presented FANCI at
USENIX Security 2018, carrying no reference to any work using
deep learning, in which manually engineered features were used,
in combination with Random Forests to detect DGA-generated
domains in NXDomain-failed DNS queries (i.e., queries to non-
existent domain names).

In this work, we have re-implemented and re-evaluated two
state-of-the-art DGA detection methods, one using deep learning,
the other using traditional machine learning, i.e. respectively the

Detection of Algorithmically Generated Domain Names used by Botnets: A Dual Arms Race. SAC ’19, April 8–12, 2019, Limassol, Cyprus

LSTM method presented in [24] and the FANCI Random Forest
classifier presented in [19], and compared the performance of both
approaches on the same data set. Such a systematic comparison is
necessary as (1) different works rely on dissimilar methods to obtain
the ground truth used to train the machine learning classifiers, and
(2) previous research has shown that some works make invalid
assumptions about the truthfulness of their ground truth data. Both
solutions will be tested against the newly designed DGA.

3 METHODOLOGY
To compare the classification performance of two classifiers, we
first need to obtain a ‘ground truth’ data set: in this case, a col-
lection of domain names which are known with certainty to be
algorithmically generated or not.

3.1 Ground truth
Ground truth data for both malicious (DGA) and benign (non-DGA)
domain names is by the very nature of this research harvested from
different sources:

Malicious ground truth was obtained from DGArchive [14],
a service offered by Fraunhofer FKIE and maintained by Daniel
Plohmann. Since only a limited number of top level domains (TLD)
are available and the particular TLD used by a domain generation
algorithm does not have any influence on classification accuracy,
we removed the TLD from the DGA domain names. We selected all
DGAs in DGArchive for which 100,000 or more unique recorded
domain names were available when disregarding the TLD from the
domain name. This resulted in a list of 26 DGAs shown in Table 1.

For benign ground truth, many authors choose the Alexa [1]
top-n lists of most accessed web sites. However, recent work by
Le Pochat et al. [10] has shown the Alexa top-n lists to be easily
manipulatable. In fact, it turns out the Alexa lists already contain
DGA-generated domain names. Moreover, the list of most popular
domain names is very likely biased towards shorter, easier to pro-
nounce and to remember domain names, compared to the average
registered domain name. Therefore, the authors of this work have
chosen to use the list of the first 100,000 registered domain names
from a well known TLD in 2016, which were filtered according to
the following criteria:

• The domain names did not end up on any of the following
black lists: Google’s Safe Browsing List [7], Spamhaus DBL
blacklist [21], the SURBL blacklist [20].
• No internationalized domain names were used (since at the
time of writing none of the DGAs use internationalized (IDN)
domain names – which would make classification of inter-
nationalized domain names trivial)
• The domain names were not known in DGArchive.

For each DGA, we constructed the ground truth data as a shuffled
mix of 100,000 benign and 100,000 malicious domain names, using
the same benign ground truth data for each DGA evaluated.

3.2 DGA Classifiers
In this section, we briefly describe the main characteristics of the
two state-of-the-art DGA classifiers we used for our experiments.

Table 1: Domain Generation Algorithms Evaluated

DGA Length Comments

banjori_dga 7→ 26 † banking trojan
chinad_dga 16
conficker_dga 5→ 11 † worm
cryptolocker_dga 12→ 18 † ransomware
dnschanger_dga 10
dyre_dga 34 banking malware
emotet_dga 16 † information stealer
gameover_dga 19→ 28 banking, info stealer
gameover_p2p 11→ 32 † botnet Zeus
gozi_dga 12→ 24 † information stealer
locky_dga 5→ 17 ransomware
murofet_dga 7→ 16 †
murofetweekly_dga 32→ 47
necurs_dga 7→ 25
nymaim_dga 5→ 13 infrastr. + ransomware
padcrypt_dga 16→ 19 ransomware
proslikefan_dga 6→ 12
pushdo_dga 8→ 12
pykspa_dga 6→ 12 †
qadars_dga 12
qakbot_dga 8→ 25
ramnit_dga 8→ 19 file infector
ranbyus_dga 14→ 17
rovnix_dga 18
symmi_dga 13→ 20
virut_dga 6 file infector
†: Malware not active anymore in 2018.

Feed-forward neural network

Recurrent neural network

in
pu

t
in

p
ut

o
ut

pu
t

ou
tp

ut

Figure 2: Feed-forward vs. recurrent neural networks

SAC ’19, April 8–12, 2019, Limassol, Cyprus Jan Spooren, Davy Preuveneers, Lieven Desmet, Peter Janssen, and Wouter Joosen

3.2.1 The Woodbridge LSTM. We implemented the Long Short-
Term Memory (LSTM) neural network as proposed in the afore-
mentioned work by Woodbridge et al. [24].

An LSTM is a specific type of recurrent neural network (RNN).
RNNs are frequently used for recognizing or predicting patterns in
sequential data. Contrary to feed forward neural networks, RNNs
have an internal short-term memory to persist important things
about the input they receive. They achieve this by copying the
output and looping it back into the network, as depicted in Figure 2.
This characteristic enables RNNs to create a deeper understanding
of a sequence and its context, and to predict what is coming next.
LSTMs extend RNNs by enabling such networks to remember their
inputs over a longer period of time, thereby extending their memory
capacity beyond two time steps. A cell in an LSTM has a state that
can be read, written or reset via a set of programmable gates. These
gates modulate both the input connection and recurrent connection
with a value between 0 and 1 allowing the current state to remain
the same between time steps, to be forgotten in the next time step
or a combination thereof.

LSTMs are a good fit to recognize DGAs as they can learn and
generalize the pattern generation process of many DGAs without
the need to manually craft higher level features based on the raw
input. The authors also argue that LSTMs work as a black box
making it difficult for adversaries to circumvent a classifier without
the same training set. The DGA classifier proposed by Woodbridge
et al. consists of following sequential layers:
• An embedding layer, which converts variable length se-
quences of domain name characters to a fixed length, zero-
padded array of features.
• The LSTM layer, which receives its input from the embed-
ding layer with a dimensionality of 38 (encoding 26 char-
acters, 10 digits, the dash character and an end token), and
generates an output dimension of 128.
• A dropout layer of 0.5, preventing over-fitting.
• A dense output layer, with one output dimension followed
by a sigmoid activation function.

To ensure the validity of our classification results, we re-used the im-
plementation available on the EndGame Inc. GitHub repository [9].

We evaluate the performance of the classifier for each DGA
separately, using 5-fold cross validation: the network is trained with
4/5 of the data in 10 epochs, using a batch size of 128; the remaining
1/5 of the data is then used for testing the trained network. This is
repeated 4 more times with different folds of the data, discarding
the previously trained network, thus ensuring testing data was
never used for training.

3.2.2 Random Forests and FANCI features. We implemented the
FANCI feature extraction as described in the aforementioned work
by Schüppen et al. [19] and fed the 41 extracted features1 to a
Random Forest of 100 trees, each constructed considering 6 ran-
dom features. We again used 5-fold cross validation to evaluate its
performance.

In this comparative work, we wish to compare the efficacy of
the deep-learning LSTM network, which will find its own features
from the input data, versus the manually engineered features from
1FANCI uses 21 features, however, feature #20 is a feature vector of 21 values, thereby
resulting in 41 values

Table 2: FANCI features that are not used in the comparison

No Feature Output

2 Number of Subdomains int
3 Subdomain Length Mean real
4 Has www Prefix bool
5 Has Valid TLD bool
6 Contains Single-Character Subdomain bool
8 Contains TLD as Subdomain bool
9 Ratio of Digit-Exclusive Subdomains real
10 Ratio of Hexadecimal-Exclusive Subdomains real

the FANCI system in detecting algorithmically generated domain
names, purely based on the domain name character sequences. The
FANCI system not only detects DGA generated domain names
by examining domain name character sequences, but also looks
at other features, harvested from NXDomain DNS queries. E.g.,
FANCI feature 5, Has Valid TLD is a binary feature, indicating that
the domain name has a valid top level domain. It is clear that no
DGA will ever output domain names with an invalid TLD, since
those domain names would never resolve and are therefore useless.
This characteristic is a useful feature in the FANCI system, since it
can easily detect human typing errors in the TLD-part of domain
names, which are therefore clearly never DGA-generated domain
names. Our methodology to fairly compare the two classifiers on
their ability to detect an algorithmically generated domain name,
consists of feeding both with a mix of 50% generated domain names
by a known DGA and 50% benign ground truth data, both of which
carry no TLD nor subdomains. Therefore, a number of features used
by the FANCI systemwill in practice not be used in our comparative
test. These features are listed in Table 2. It is therefore to be expected
that the classification scores for FANCI as listed in this work will
be lower than those published in the FANCI paper [19].

4 DGA CLASSIFICATION RESULTS
The classification results for each of the tested DGAs are listed for
both classifiers in Table 3. For all of the tested DGAs, the LSTM-
classifier yielded a better or identical True Positive Rate (TPR), False
Positive Rate (FPR), Precision and Accuracy. On average, the FPR of
the Random Forest classifier is over 4 times higher than the LSTM.
The average accuracy of the LSTM-classifier is 98.7%, while the
average Random Forest classifier reaches 93.7%.

The standard deviation on the FPR is 3 times higher for the Ran-
dom Forest classifier, and the standard deviation for the accuracy is
4 times higher for the Random Forest classifier, indicating that the
LSTM not only yields better classification results, but also a higher
consistency over different DGAs. Notably, the Random Forest with
the FANCI features perform considerably worse on the gozi_dga,
locky_dga, nymaim_dga, pushdo_dga and pykspa_dga DGAs.

One possible explanation for the better consistency of the LSTM
classifier is that the LSTM network learns its used classification
features automatically during the training process, whereas the
Random Forest needs manually engineered features, which may be
better or worse suited for different DGAs. There is, however, an-
other danger in the use of manually engineered features: knowledge

Detection of Algorithmically Generated Domain Names used by Botnets: A Dual Arms Race. SAC ’19, April 8–12, 2019, Limassol, Cyprus

of which features are used can be used to the advantage of DGA
developers, who can modify the Domain Generation Algorithm to
become less easily detectable.

In the following section, we will do exactly this: we will construct
a new DGA, with the knowledge of the FANCI feature set to make
it less easily detectable.

5 ATTACKING THE MANUALLY CRAFTED
FEATURESET

The goal of this exercise is to demonstrate that it is possible to create
a new DGA, which we will name deception_dga, which takes the
features of a classifier into account in order to circumvent detection.
An adversary creating such a DGA will need to implement the
feature set used by the classifier, obtain a classifier implementation,
and obtain the benign ground truth.

We used the following approach:

• We implemented the FANCI feature set of 41 features as
defined in the FANCI paper [19] in a Python implementation.
However, as mentioned in section 3.2.2, the features listed
in Table 2 are unused in our comparison, the goal of which
was to compare two different machine learning techniques
objectively on their ability to detect algorithmically gener-
ated domain names, purely based on domain name character
sequences. Therefore, in the following, we will examine the
effect of influencing a certain number of the 33 features
actually used.
• We used the WEKA[23] workbench and its implementation
of Random Forests to test the performance of our newly built
DGA.
• An adversary creating a DGA will require benign ground
truth data for testing too: we assume an adversary would
probably use the publicly available Alexa [1] list. We used the
top 1 million sites of September 16th 2018, and used 100,000
unique domain names (excluding the TLD), starting with
domain 100,001 (senenews) and ending with domain 203,824
(teatrebarcelona)2.
• We generate 100,000 domain names with our DGA with a
given seed as the malicious ground truth, add the 100,000
Alexa-domains as the benign ground truth, shuffle these
records and perform classification on this data set with 5-
fold cross validation.

With the results of the classification, adversaries can iteratively
improve their DGAs (as illustrated in Figure 3), until a desired sub-
optimal classification result is achieved, therefore effectively thwart-
ing DGA-detection classifiers. While creating our deception_dga
DGA, we only used data from the Alexa list, mimicking the informa-
tion available to a DGA author. However, for fairness of comparison,
we evaluated the classifier performance of the Random Forest using
the FANCI feature set and the Woodbridge LSTM on domains gen-
erated by deception_dga, using the benign ground truth which
we used for evaluating the two classifiers in section 4.

2Some domains appear multiple times in the Alexa list, with different TLDs. Those
duplicates were skipped.

Figure 3: Iterative DGA development process

5.1 The development of deception_dga
As mentioned, the development of the DGA used an iterative ap-
proach, with the goal of reducing the accuracy of the DGA detection
classifiers. The different versions of the DGA are described below.

5.1.1 Version 0 - baseline. We created a baseline version, which
would generate domain names with a length uniformly distributed
between 13 and 18 characters, using the alphabet of ‘a’ - ‘z’, also
uniformly distributed.
• Accuracy of detection: Random Forest: 0.987 LSTM: 1.000
• FANCI features influenced: 0/33

5.1.2 Version 1 - Modelling domain name length. FANCI’s first
feature is the domain name length. This version of the DGA varies
the length of the domain names generated, to make it follow the
same statistical length distribution as observed in the Alexa benign
ground truth. deception_dga now outputs domains with a length
varying between 5 and 42 characters.
• Accuracy of detection: Random Forest: 0.873 LSTM: 0.993
• FANCI features influenced: 1/33

5.1.3 Version 2 - Adding vowel ratio. On top of version 1, this
version also varies the vowel distribution in generated domain
names, as observed in the Alexa ground truth for domain names of
a specific length.
• Accuracy of detection: Random Forest: 0.715 LSTM: 0.949
• FANCI features influenced: 2/33

5.1.4 Version 3 - Using character probability distribution. This ver-
sion abandons generation of characters with a uniform distribution
between ‘a’ and ‘z’, and instead uses the character probability dis-
tribution present in the domain names recorded in the Alexa list.
The full domain name alphabet ‘a’ - ‘z’, ‘0’ - ‘9’ and ‘-’ is used. Using
the character distribution of the Alexa domains, implies that the

SAC ’19, April 8–12, 2019, Limassol, Cyprus Jan Spooren, Davy Preuveneers, Lieven Desmet, Peter Janssen, and Wouter Joosen

Table 3: Comparison of LSTMandRandomForest performance on individualDGAs. TheMin,Average,Max and StdDev exclude
our specially crafted deception_dga. Better scores are indicated in boldface.

LSTM Random Forest
DGA TPR FPR Prec Acc TPR FPR Prec Acc
banjori_dga 1.000 0.000 1.000 1.000 0.950 0.050 0.951 0.950
chinad_dga 0.999 0.001 0.999 0.999 0.998 0.002 0.998 0.998
conficker_dga 0.967 0.048 0.952 0.959 0.871 0.129 0.871 0.871
cryptolocker_dga 0.992 0.004 0.996 0.994 0.936 0.064 0.937 0.936
dnschanger_dga 0.994 0.012 0.988 0.991 0.964 0.036 0.965 0.964
dyre_dga 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
emotet_dga 0.997 0.002 0.998 0.998 0.986 0.014 0.986 0.986
gameover_dga 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
gameover_p2p 1.000 0.000 1.000 1.000 0.989 0.011 0.989 0.989
gozi_dga 0.957 0.044 0.956 0.957 0.857 0.143 0.859 0.857
locky_dga 0.976 0.028 0.973 0.974 0.862 0.138 0.863 0.862
murofet_dga 0.997 0.002 0.998 0.997 0.960 0.040 0.960 0.960
murofetweekly_dga 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
necurs_dga 0.984 0.021 0.979 0.981 0.879 0.121 0.880 0.879
nymaim_dga 0.968 0.049 0.952 0.960 0.864 0.136 0.864 0.864
padcrypt_dga 1.000 0.000 1.000 1.000 0.992 0.008 0.992 0.992
proslikefan_dga 0.968 0.038 0.963 0.965 0.880 0.120 0.880 0.880
pushdo_dga 0.997 0.013 0.987 0.992 0.865 0.135 0.875 0.865
pykspa_dga 0.972 0.035 0.966 0.969 0.857 0.143 0.857 0.857
qadars_dga 1.000 0.000 1.000 1.000 0.994 0.006 0.994 0.994
qakbot_dga 0.987 0.016 0.984 0.985 0.905 0.095 0.905 0.905
ramnit_dga 0.986 0.016 0.984 0.985 0.883 0.117 0.883 0.883
ranbyus_dga 0.996 0.002 0.998 0.997 0.973 0.027 0.973 0.973
rovnix_dga 1.000 0.001 0.999 0.999 0.998 0.002 0.998 0.998
symmi_dga 0.989 0.020 0.980 0.984 0.936 0.064 0.936 0.936
virut_dga 0.991 0.033 0.968 0.979 0.975 0.025 0.976 0.975
deception_dga 0.871 0.160 0.844 0.855 0.599 0.401 0.599 0.599

Min 0.957 0.000 0.952 0.957 0.857 0.000 0.857 0.857
Average 0.989 0.015 0.985 0.987 0.937 0.063 0.938 0.937
Max 1.000 0.049 1.000 1.000 1.000 0.143 1.000 1.000
StdDev 0.013 0.017 0.016 0.014 0.055 0.055 0.054 0.055

VowelRatio feature is automatically modeled according to the Alexa
ground truth, as well as the DigitRatio and Alphabet Cardinality
FANCI features, as well as its list of seven 1-gram features (mean,
stddev, min, max, median, lower_quartile and upper_quartile). This
change did not have a very big impact though: classification accu-
racy of the Random Forest even slightly increased, while the LSTM
accuracy dropped, albeit significantly higher still than the Random
Forest accuracy.

• Accuracy of detection: Random Forest: 0.722 LSTM: 0.929
• FANCI features influenced: 10/33

5.1.5 Version 4 - Using character probability, given the previous
character. Further in the direction of version 3, we used the over-
all character probability distribution for the first character (for
which we only allowed ‘a’ - ‘z’, no dash or digits). All subsequent
characters use the distribution frequency as recorded in the Alexa
ground truth for a character, given a specific previous character.

This approach essentially models bigram-probabilities. This ver-
sion of the DGA tries to present expected values to the following
FANCI features: Domain Name Length, Contains Digits, Vowel Ratio,
Digit Ratio, Alphabet Cardinality, Ratio of Repeated Characters, Ratio
of Consecutive Consonants, Ratio of Consecutive Digits, the seven
1-gram features and the seven 2-gram features.
• Accuracy of detection: Random Forest: 0.599 LSTM: 0.855
• FANCI features influenced: 22/33

5.2 Results
An overview of the effect in classification accuracy when different
features are being ‘emulated’ by the DGA is shown in Figure 4 3.
As a general trend, as more features are emulated by the DGA, the
Random Forest classifier accuracy starts to degrade. There is one re-
markable exception, which is when switching from deception_dga

3Please, note that the y-axis scale starts at 0.5, since accuracy below 0.5 is meaningless
for binary classifiers.

Detection of Algorithmically Generated Domain Names used by Botnets: A Dual Arms Race. SAC ’19, April 8–12, 2019, Limassol, Cyprus

���

���

���

���

���

�

� � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� ��

�
��
��
��
��
���
�
��
��
��
��

������ �� �������� ��������� �� ���

������ ������
����

version 0

version 1

version 2

version 3

version 4

Figure 4: Change of classification accuracy when a certain
number of features is actively ‘emulated’ by the DGA.

version 3 to 4, the number of emulated features increases from 2
to 10, however the Random Forest classification accuracy slightly
increases from 0.715 to 0.722 . One possible explanation might be
that Domain Name Length and Vowel Ratio are very heavy weighing
features in the decision process of the Random Forest and the Vowel
Ratio distribution produced when using the character frequency
distribution of the Alexa domains may not be as exact as when the
Vowel Ratio distribution is specifically enforced while generating
domain names.

The new DGA also gives the LSTM a hard time, dropping its
accuracy down to 0.855, which is the lowest recorded so far for
the LSTM, at par with the accuracy of the Random Forest for the
gozi_dga, locky_dga, nymaim_dga, pushdo_dga and pykspa_dga
DGAs. Increasing the number of epochs on the LSTM from 10
to 15, marginally increases the accuracy to 0.860. Changing the
LSTM output space dimensionality from 128 to 256, results in a
classification accuracy of 0.865. Applying both a larger output space
dimensionality and increasing the number of training epochs to 15
combined, still results in a classification accuracy of 0.864.

5.3 Practical feasibility of the deception_dga
DGA

The version of deception_dga, described in section 5.1.5 consists of
535 lines of Python code, including comments and whitespace. This
also includes the statistical parameters it collected from the Alexa
benign ground truth, which we believe will not change much over
time and need never be updated in the code. It does not call (import)
any libraries and in fact implements its own linear congruential
generator for generating random numbers, given a particular seed.

The code, using a single thread on a 2.6 GHz Intel Core i5 pro-
cessor, generates over 6000 random domain names per second and
is a perfectly usable DGA. It completely breaks the Random Forest
using the FANCI feature set, since clearly, a False Positive Rate of
40% and a True Positive Rate of 60% prevent any useful deployment
of this classifier.

5.4 Other reflections and observations
We demonstrated that the countermeasures used to evade detection
with one specific classifier (Random Forest classifier for which the
input features were documented), also affected the classification
accuracy of another state-of-the-art LSTM-based classifier, albeit
to a lesser extent. Although Woodbridge et al. claimed that LSTMs
make it difficult for adversaries to circumvent a classifier with-
out the same training set, our experiments showed that this claim
turned out to be not entirely correct. Indeed, adversarial examples
that are designed to mislead machine learning models at test-time
often transfer, i.e. the same adversarial example fools more than
one model. This transferability property has been explored before
by Tramèr et al. [22]. An alternative evaluation path that could
further confirm this hypothesis would have been to build a new
DGA that aims to evade detection by the LSTM based detector, and
then evaluating how well it is also able to circumvent the Random
Forest based detector.

In the previous experiments, we have used a state-of-the-art
Random Forest based DGA classifier and built a new DGA that
circumvented this particular classifier. One can argue that given
the fact that we explained the countermeasures used by the new
DGA to evade detection, security specialists could in turn use this
knowledge to further improve their classifiers. Building upon the
previous observation, one could automate this arms race between
adversaries and defenders with a deep learning method known
as Generative Adversarial Networks (GAN) [6], as used in Deep-
DGA [2]. This class of unsupervised machine learning relies on two
deep learning networks, where (1) the generative neural network
produces new candidates with the objective to increase the error
rate and (2) the discriminative neural network aims to distinguish
malicious and benign instances thereby decreasing the error rate.
During the training phase, each neural network further improves
its own objective until an equilibrium is reached. The adversary
would use the generative neural network to produce new domain
names, whereas the defender would use the discriminative neural
network to improve detection.

6 CONCLUSIONS
In this work, we have compared two state of practice approaches
in machine learning for the detection of algorithmically generated
domain names, when a sufficient number of DGA-generated domain
names is available for training. We establish that the deep learning
approach consistently outperforms Random Forests with manually
engineered features, where the classification accuracy over a set of
26 real-world DGAs averages 98.7% for the neural net, versus 93.7%
for the Random Forest. A significantly lower standard deviation
for the neural net accuracy over the different evaluated DGAs also
indicates better classification consistency over the different DGAs.

Additionally, we investigated the concern that knowledge of
manually engineered features may be abused by DGA developers
to create new versions of DGAs which will become less detectable.
To this end, we developed a new DGA, using the knowledge of the
feature set used by the FANCI system. This DGA indeed renders
the Random Forest classifier useless, with its classification accuracy
reduced to 59.9%. The deep learning classifier is also affected by the
approach of this new DGA, reducing its accuracy to 85.5%.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Jan Spooren, Davy Preuveneers, Lieven Desmet, Peter Janssen, and Wouter Joosen

As future work, we consider the use of the generative neural
network of a Generative Adversarial Network (GAN) to strengthen
the circumvention capabilities of our DGA against existing deep
learning based DGA detectors, while also evaluating whether there
is any classification accuracy improvement by the discriminative
neural network of this GAN.

ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU Leuven.
The authors would like to thank Daniel Plohmann for his great
work on the DGArchive and for making the results of his work
available to the research community; as well as the reviewers for
their helpful feedback.

The authors also gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for this
research.

REFERENCES
[1] Alexa Internet, Inc. . 2018. Alexa. https://www.alexa.com/topsites. [Online;

accessed 16-September-2018].
[2] Hyrum S. Anderson, Jonathan Woodbridge, and Bobby Filar. 2016. DeepDGA:

Adversarially-Tuned Domain Generation and Detection. In Proceedings of the
2016 ACM Workshop on Artificial Intelligence and Security (AISec ’16). ACM, New
York, NY, USA, 13–21. https://doi.org/10.1145/2996758.2996767

[3] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-Away Traffic to
Bots: Detecting the Rise of DGA-Based Malware. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12). USENIX, Bellevue, WA, 491–
506. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/antonakakis

[4] Evan Cooke, Farnam Jahanian, and Danny McPherson. 2005. The Zombie
Roundup: Understanding, Detecting, and Disrupting Botnets. (07 2005).

[5] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In CCS. ACM,
1285–1298.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA,
USA, 2672–2680. http://dl.acm.org/citation.cfm?id=2969033.2969125

[7] Google. 2017. Google Safe Browsing List. https://developers.google.com/
safe-browsing/. [Online; accessed August-2017].

[8] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
Comput. 9, 9 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[9] Hyrum Anderson. 2018. Endgame GitHub. https://github.com/endgameinc/dga_
predict/. [Online; accessed 20-August-2018].

[10] Victor Le Pochat, TomVanGoethem, Samaneh Tajalizadehkhoob,Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium (NDSS 2019).

[11] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In NDSS. The Internet Society.

[12] Miranda Mowbray and Josiah Hagen. 2014. Finding Domain-Generation Algo-
rithms by Looking at Length Distribution. In 25th IEEE International Symposium
on Software Reliability Engineering Workshops, ISSRE Workshops, Naples, Italy,
November 3-6, 2014. IEEE Computer Society, 395–400. https://doi.org/10.1109/
ISSREW.2014.20

[13] Mayana Pereira, Shaun Coleman, Bin Yu, Martine DeCock, and Anderson Nasci-
mento. 2018. Dictionary Extraction and Detection of Algorithmically Generated
Domain Names in Passive DNS Traffic: 21st International Symposium, RAID
2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceedings. (09 2018),
295–314.

[14] Daniel Plohmann. 2018. DGArchive. https://dgarchive.caad.fkie.fraunhofer.de/.
[Online; accessed 10-September-2018].

[15] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader, and Elmar
Gerhards-Padilla. 2016. A Comprehensive Measurement Study of Domain Gen-
erating Malware. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 263–278. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/plohmann

[16] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and Wouter
Joosen. 2017. Automated Feature Extraction for Website Fingerprinting through
Deep Learning. CoRR abs/1708.06376 (2017). arXiv:1708.06376 http://arxiv.org/
abs/1708.06376

[17] Christian Rossow, Dennis Andriesse, Tillmann Werner, Brett Stone-Gross, Daniel
Plohmann, Christian J. Dietrich, and Herbert Bos. 2013. SoK: P2PWNED - Model-
ing and Evaluating the Resilience of Peer-to-Peer Botnets. 2013 IEEE Symposium
on Security and Privacy (2013), 97–111.

[18] Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and Stefano Zanero. 2014.
Phoenix: DGA-Based Botnet Tracking and Intelligence. In Detection of Intru-
sions and Malware, and Vulnerability Assessment, Sven Dietrich (Ed.). Springer
International Publishing, Cham, 192–211.

[19] Samuel Schüppen, Dominik Teubert, Patrick Herrmann, and Ulrike Meyer. 2018.
FANCI : Feature-based Automated NXDomain Classification and Intelligence. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD, 1165–1181. https://www.usenix.org/conference/usenixsecurity18/
presentation/schuppen

[20] SURBL.org. 2017. SURBL - URI Reputation Data. http://www.surbl.org/. [Online;
accessed August-2017].

[21] The Spamhaus Project Ltd. 2017. The Domain Block List. https://www.spamhaus.
org/dbl/. [Online; accessed August-2017].

[22] Florian TramÃĺr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. 2017. The Space of Transferable Adversarial Examples. arXiv (2017).
https://arxiv.org/abs/1704.03453

[23] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. 2016. Data
Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (4th ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[24] Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, and Daniel Grant.
2016. Predicting Domain Generation Algorithms with Long Short-Term Memory
Networks. CoRR abs/1611.00791 (2016). arXiv:1611.00791 http://arxiv.org/abs/
1611.00791

[25] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan. 2012. Detecting
Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis.
IEEE/ACM Transactions on Networking 20, 5 (Oct 2012), 1663–1677. https:
//doi.org/10.1109/TNET.2012.2184552

https://www.alexa.com/topsites
https://doi.org/10.1145/2996758.2996767
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/endgameinc/dga_predict/
https://github.com/endgameinc/dga_predict/
https://doi.org/10.1109/ISSREW.2014.20
https://doi.org/10.1109/ISSREW.2014.20
https://dgarchive.caad.fkie.fraunhofer.de/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/plohmann
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/plohmann
http://arxiv.org/abs/1708.06376
http://arxiv.org/abs/1708.06376
http://arxiv.org/abs/1708.06376
https://www.usenix.org/conference/usenixsecurity18/presentation/schuppen
https://www.usenix.org/conference/usenixsecurity18/presentation/schuppen
http://www.surbl.org/
https://www.spamhaus.org/dbl/
https://www.spamhaus.org/dbl/
https://arxiv.org/abs/1704.03453
http://arxiv.org/abs/1611.00791
http://arxiv.org/abs/1611.00791
http://arxiv.org/abs/1611.00791
https://doi.org/10.1109/TNET.2012.2184552
https://doi.org/10.1109/TNET.2012.2184552

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Ground truth
	3.2 DGA Classifiers

	4 DGA classification results
	5 Attacking the manually crafted featureset
	5.1 The development of deception_dga
	5.2 Results
	5.3 Practical feasibility of the deception_dga DGA
	5.4 Other reflections and observations

	6 Conclusions
	Acknowledgments
	References

